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Turning the tables in online ad auctions 

 

 

Abstract 

 

The proposed AI application (‘Turntable’) will reverse the information asymmetry in 

online advertising auctions, transferring information advantage back to large 

advertisers and away from media platforms selling targeted advertising. 

 

Specifically, it will enable a greater share of large advertisers’ investment in digital 

media platforms to be optimised towards buying high-value ad impressions, rather 

than digitally-trackable outcomes. It will do this by predicting the differential expected 

value of different impressions on outcomes (e.g. sales), allowing advertisers to find 

underpriced impressions inside the ‘walled garden’ media platforms, and limit the 

passback of outcome data to these platforms. 

 

This will benefit large advertisers by returning market power through information 

advantage, driving higher return on advertising spend. It will benefit [COMPANY] by 

creating a new source of value through IP and information scale, offsetting 

commoditisation of media buying services by technology. 

 

The evolution of platform auctions 

 

In 2022, 72% of all global paid advertising investment - $616 billion – will be spent in 

environments where the ad placement is determined dynamically by an algorithm at 
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the point of exposure.1 This is known as ‘programmatic’ ad placement because the 

allocation of ads – i.e which users see which ads, and in which contexts – is handled 

by software. Programmatic placement became the dominant form of ad placement 

globally in 2017.  

 

Within this, 50% of all global ad investment will go into three large media and 

commerce platforms: Google, Meta and Amazon. These platforms offer ad targeting 

capability based on high-volume, high-granularity, high-frequency data that these 

platforms collect about their users’ identities, behaviours, inferred interests and 

propensity, created by predicting behaviour based on user features to identify 

‘interest’ and ‘in-market’ audiences (for example, people likely to buy a new car in 

the near future, or people actively looking to book flights from London to New York).2 

These platforms – sometimes called ‘walled gardens’ because they do not share 

user data with advertisers, just the ability to target ads to certain cohorts of users – 

offer global availability and high flexibility of when and where to spend advertising 

budgets, making it easy to move investment around between brands, products, 

markets, time periods, etc., to capitalise on shifting consumer demand. 

 

The walled gardens use a real-time auction mechanism to determine which ads are 

showed to a given user in a given context (geography, time, and specific 

surroundings where an ad appears). This technique, known as real-time bidding, first 

appeared in online display advertising on publisher websites and is often called 

‘open-web’ bidding.3 In its original form, at the point at which a user appears in a 

 
1 For this and the following statistics see GroupM (2021). 
2 For a detailed overview of the business logic of how features are assigned to users and used to 
generate predictions, see Zuboff (2018). 
3 See ‘Understanding Demand-Side Platforms’ in Busch (2014). 
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given context, information about user and context is sent from the publisher (using 

software called a supply-side platform, or SSP) to all eligible advertisers (using a 

demand-side platform, or DSP). This information is broadcast in real time as a set of 

data – called a bid request – so each advertiser can evaluate whether the user is of 

interest, and decide whether to bid for the right to serve an ad. Open-web online ad 

auctions are held in software environments called ad exchanges, with the highest-

bidding advertiser winning on a first- or second-price auction basis.4 

 

Crucially, in an open-web programmatic auction, each advertiser sees the relevant 

information and decides whether to bid or not. Every bid is an automated decision 

based on a prediction – the expected return on ad-spend (ROAS) from the user if the 

ad is served. For example, suppose a winning bid price of $0.02 to serve an ad; an 

expected conversion rate from ad exposure to purchase of 5%; and an average 

purchase value of $5. Each impression served has an expected value of $0.25, 

hence an expected ROAS of $0.23 (an 11.5x multiple). 

 

Walled-garden programmatic auctions (‘platform auctions’) represent an evolution of 

this approach, and have become the dominant form of auction over the last five 

years. In an open-web auction, information about the user is broadcast to each 

bidder, informing the decision to bid. In a platform auction, advertisers submit their 

targeting and bidding preferences to the platform: which audiences and contexts 

they are interested in, which outcomes they want to generate (e.g. impressions, 

clicks, website visits, online sales), and how much they are willing to spend. The 

 
4 For a technical analysis of open-web bid requests, see Olejnik (2014). 
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platform then determines which auctions each advertiser enters, and the bid price, 

ostensibly to maximise the delivery of outcomes for a given budget.5 

 

I will show how this necessarily puts advertisers at an information disadvantage, by 

nature of the dual requirement of the platform to generate returns for advertisers and 

maximise yield for itself. Specifically, the platform auction model constrains the range 

of outcomes and makes it effectively impossible for advertisers to find and exploit 

pockets of excess value – things they know that the platform doesn’t, that allow them 

to pay ‘below the odds’ for ad impressions. I then propose an AI application which 

reverses this information asymmetry by allowing advertisers to keep information out 

of the auction (and therefore out of the market) without penalising them for doing so. 

 

 

The information asymmetry problem in platform auctions 

 

Advertisers want to maximise ROAS, so they want to exploit temporary efficiencies 

in the market for attention. Certain kinds of knowledge about users in given contexts 

are valuable to advertisers, and to the platforms who auction the right to deliver 

targeted advertising. Someone is valuable if they: 

 

• are strongly pre-disposed to buy in this category within a given time period, 

though have not yet been triggered to buy imminently 

• are strongly pre-disposed to buy a particular brand when buying in category 

• have a high typical spend per purchase 

 
5 See Amazon, Google, Meta (all 2022) for how this is explained to advertisers. 
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• have a high probability of repeat purchase if acquired 

• are in-market and have a high probability of imminent purchase 

 

Platforms apply their user data to make these kinds of predictions, because 

advertisers are willing to pay more to reach users who exhibit these traits. The 

expected value of an impression to an advertiser is the product of the average value 

of an outcome (e.g. purchase) and the likelihood of an incremental outcome given ad 

exposure. Brand propensity and category intent are functions that improve the 

expected outcome conversion rate within a given time period: you are more likely to 

respond to an ad for a brand you are pre-disposed to, and to do so quickly if you’re 

already in the market – and both of these improve expected near-term marketing 

performance.6 Therefore advertisers and platforms are seeking information arbitrage 

and are willing to incur costs to gather data that provides it.7 

 

Performance marketers want to be in the right auctions and pay the right price to 

generate outcomes.8 In open-web auctions, they collect bid request information and 

build predictive models based on all the user features broadcast, and historic bids 

won and lost, to predict a fair winning bid price. Publishers use similar data to set 

floor prices for different users based on expected bid prices. In an open-web auction 

there is information parity so long as advertisers and publishers are making 

predictions and decisions based on the same data. Each side is motivated to create 

information advantage by acquiring more features (e.g., from data brokers) that allow 

 
6 For classic summaries of the statistics of preference and recency-frequency effects on purchase, 
see McDonald (1992, 1996) and Broadbent (1999). 
7 For the concept of information arbitrage cost, see Grossman & Stiglitz (1980). 
8 ‘Performance marketers’ here refers to buyers of advertising ‘remunerated on the basis of 
performance..for the leads or customers they acquire..when the results of marketing campaigns can 
be quickly recorded’ (Kreutzer, 2022, p.25). 
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better predictions about users. All advertisers are free to decide which auctions to 

participate in. 

 

In a platform auction the opposite is true. The advertiser asks the platform to be 

invited to certain auctions where a given user action (e.g. click) is for sale. The 

advertiser sets a budget and may set a maximum or average bid. The platform then 

decides which auctions the advertiser will bid in. A max or average bid constrains the 

number of auctions in which an advertiser participates.9 A max bid implies a 

minimum number of auctions (e.g. at least ten wins to spend £100 with a £10 max 

bid). An average bid gives more flexibility to the platform to bid high or low across 

more auctions but implies an expected value of number of wins in a time period. 

Free budget allocation gives the platform maximum freedom. 

 

This auction model represents a little-discussed principal-agent problem. The agent 

acting on behalf of the advertiser, deciding whether to bid, is controlled by the 

platform hosting the auction, which is also the seller of the ad inventory. Chen (2021) 

looks at the question of optimal auction design in keyword-based search auctions in 

the context of ‘two distinct sources of information’, where ‘each consumer privately 

observes her search cost’ (i.e. effort of searching) and ‘each advertiser privately 

observes her probability’ of driving a conversion, so ‘these attributes are unknown to 

other consumers, advertisers, and the search engine’. However, this is not true of 

platform auctions in practice for two reasons, detailed below. First, platforms know 

the success probability of each advertiser (and ad), and incentivise advertisers to 

 
9 E.g. see Meta (2022, 1) on budgets and caps. 
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share conversion information back to improve auction performance. Second, the 

platform controls which auctions each advertiser enters, and how much they bid. 

 

If the ‘auction agent’ were entirely in service of the advertiser, then in a market for 

fixed-value outcomes (e.g. where all clicks are equal in value), it would assess a 

user’s click probability and use this to predict the bid needed to win. To do this it 

would need access to auction data: 

 

1. The features of previous ads (winning and losing) in previous auctions – e.g. 

brand, format, copy, image elements, destination, etc. 

2. The features of users (as in a bid request) 

3. The conditional probability of a click given the set of user features and ad 

features, if an ad is shown 

4. The winning bid prices for ads of type X and for users of type Y 

 

In short it would need access to the whole historic user stream, ad stream and bid 

stream, to build a model to predict the winning bid price for any combination of user 

and ad features. Specificially, it would want to predict the second price so it could bid 

just above it. Therefore to act optimally on behalf of the advertiser the auction agent 

needs to be able to see all auction data.10 

 

An equivalent agent acting on behalf of the seller would want to predict bid prices in 

order to set a floor price in an open auction, wherever the item sold has durable 

 
10 For some attempts to predict optimal bid price using open-web auction data, see Wu (2015), 
Spentzouris (2018) and Ren (2019). 
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value. In an auction for clicks, it is better to refuse a sale for a low price if another 

auction can be held later, rather than saturate the user’s attention unprofitably which 

may reduce the chance of a click later. So the agent acting for the seller also wants 

to calculate the conditional probability of a click given the number of different ads 

shown over a given time period, with diminishing-response and time-decay functions 

applied for frequency and recency.11 

 

Now what happens if the auction agent is acting on behalf of both buyer and seller? 

The buyer wants a given number of clicks at the lowest price, so needs to predict the 

second price, and also predict whether the second price in future auctions will be 

higher or lower (to pace spend, and reach a forecast number of successful bids over 

a given time period). The seller wants to set a floor price or hold back inventory, to 

maximise yield. 

 

So the ‘buyer-seller agent’ is incentivised to control which advertisers are invited to 

which auctions. This is possible by taking the ad, user and bid streams, and 

predicting the likely bids of all potential participants. Then, only those advertisers 

likely to bid in a way that clears the floor price are likely to be invited to bid on the 

auction. The agent also wants to predict the likelihood of future auction participation 

and winning, to avoid bidders leaving the platform because they don’t win often 

enough. This is similar to the problem that casinos have to solve to keep players in 

the game, but in the platform’s case it must solve it twice: both for advertisers and for 

users.12 To avoid advertiser defection, it’s in the seller’s interest to invite advertisers 

 
11 See chapter 4 of Broadbent (1999), and Jin (2017). 
12 Chen et al. (2012) 
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only to auctions which they are fairly likely to win, and then only those they are likely 

to bid relatively high for.13 To avoid user defection, platfoms ‘weight’ bids based on 

the predicted impact of the proposed ad on the likelihood of users returning to the 

platform.14 

 

In effect this creates strong sorting: many auctions with few invitees, based on the 

expected bid-value of each click. Effectively, the buyer-seller agent says, ‘This click 

is likely to sell for $1 so we will invite buyers likely to bid $1 to bid on it.’ Within the 

context of an individual auction, this creates efficient clearing, with low risk to the 

seller. 

 

Advertisers cannot choose which auctions they are in; they cannot see information 

about auctions they don’t participate in’; and they cannot see their own bid prices 

except a max or an average. They rely on the sorting function of the buyer-seller 

agent to clear the market for them. 

 

The buyer-seller agent is making predictions about how much they will pay and 

whether they will win. This is based on data from all advertisers. So priors based on 

other advertisers are being used to assess what they can bid on, and how much they 

can bid (especially where no max or average is applied). Given strong sorting, this 

 
13 That auction participation rates can be engineered in practice is suggested by documents included 
in discovery in the legal case State of Texas (2021), which alleges that Facebook and Google entered 
a ‘Network Bidding Agreement’ guaranteeing Facebook a ‘bid rate’ and ‘win rate’ in auctions on the 
Google platform. ‘the agreement outlines that Facebook will use “commercially reasonable efforts” to 
bid on at least 90 percent of auctions in which Facebook recognizes the end user… The parties 
agreed up front on what Facebook’s Win Rate in auctions would be. The..agreement specifies that 
Facebook would have a Win Rate of at least equal to 10 percent. The agreement terms require 
Facebook to bid high enough to win the minimum percent quota of 10 percent, irrespective of how 
high others in the auctions bid.’  
14 Meta (2022, 2). 
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means their ads are shown to users based on predicted similarity to other ads seen 

by these users and users like them. In other words, only certain types of people get 

to see certain types of ads. 

 

This sorting effect keeps advertisers ‘in the game’ with regular wins and stable 

ROAS, and the sorting effect maximises yield to the platform. However, it reduces 

serendipity and has the effect of narrowing the ROAS spread, because the 

advertiser cannot adopt random or experimental strategies that may have a highly 

asymmetric payoff. The buyer-seller agent may even punish this if experiments (e.g. 

creative choices) make the ad’s performance less predictable using priors from other 

ads. 

 

On balance this auction mechanic seems to give security to platforms at the expense 

of serendipity to advertisers. This affects large advertisers most, as they are more 

dependent on asymmetric performance to drive excess return than smaller 

advertisers, for whom merely increasing spend is a stronger lever.15 

 

 

Feeding the beast 

 

The principal-agent problem is compounded because platforms incentivise 

advertisers to share as much performance information as possible. Ordinarily, an 

advertiser would not wish to share information with the platform/seller about which 

 
15 Schmitt et al. (2010) describes the asymmetric response function from increased advertising spend. 
Large advertisers by definition have high share of voice so can drive less marginal improvement per 
dollar of excess adspend than smaller competitors, increasing reliance on finding asymmetric payoffs 
for their existing spend. 
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users are most valuable. In an open-web auction the advertiser can perform 

information arbitrage to identify under-priced users/contexts. 

 

However, a platform auction removes this opportunity because the platform acts as 

agent and decides which auctions the advertiser participates in. This gatekeeping 

function, plus the strong sorting described above, actively penalises advertisers who 

do not signal to the platform which users are most valuable. 

 

There are three main types of data passback from advertisers to platforms: 

 

1. Placing platform data collection tags on brand websites and apps, so the 

platform can see which of its users are visiting a brand’s site, buying from the 

brand online, etc. 

2. Onboarding of lists of personally identifiable customer information (e.g. email 

addresses), so the platform can see which of its users are customers of the 

brand. 

3. Selecting target audience criteria within the platform, so the platform can see 

(for example) ‘Brand X is interested in reaching women aged 25-34 in New 

York City’. 

 

Performance marketers who are trying to maximise short-term ROAS performance in 

individual auctions pass as much of this information back to the platforms as 

possible to improve the likelihood of ending up in the right auctions. Each of these 

data passback mechanisms transfers information from the advertiser to the platform 

before the auction. It allows the platform to pre-emptively score certain users as 
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being of interest and value to certain brands, by identifying features and feature 

categories (e.g. geography, time, content types, occasions) that are predictive of a 

positive outcome and therefore valuable. 

 

The platform is highly incentivised to use this information to create 

interest/propensity signals specific to individual categories, i.e. to identify which 

other brands a user might respond to given the ones responded to in the past, by 

that users or others like them. This means in practice that any response data from 

an advertiser is likely to end up as a propensity signal to other advertisers, even if 

the algorithms are just using a nearest-neighbour analysis rather than a defined 

category taxonomy. 

 

Data passback becomes, in effect, a cost of entry to the right auctions. The same 

information is likely also used to identify which other advertisers should be invited to 

subsequent auctions. This transfers information advantage from an individual 

advertiser back to the platform, and in doing so erases the future ability of that data 

to generate market power. Once the knowledge that ‘Person X is of value to 

advertisers like Advertiser Y’ is in the market, its only remaining source of value is as 

an exclusion criterion – i.e. it lets Advertiser Y decline to bid on Person X because 

they are someone who can be reached using non-paid media (e.g. email marketing). 

 

The information transfer (and therefore disadvantage) is greatest for large 

advertisers who represent a large share of impressions in the platforms. Their 

adspend is disproportionately informing the platforms, and smaller competitors. 
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Hence, assume that data passback mechanisms are benefiting the platform in the 

long run by allocating advertisers to auctions more efficiently, and shifting 

information advantage from the advertiser to the platform. This certainly leads to 

higher expected bid prices and narrower ROAS distributions (through the strong 

sorting effect of putting only highly-motivated, similar, willing-to-pay advertisers in 

the same auction), and could also lead to declining effectiveness because of 

category-level high frequency effects – e.g. showing an ad for shoes to someone 

who’s seen lots of ads for shoes, because shoe-sellers attend the auction each 

time. 

 

Beating the system 

 

What happens if advertisers withhold information? The types that can be withheld 

are audience (e.g. customer lists, retargeting pools) and conversion data. Removing 

these impairs auction-sorting: the buyer-seller agent cannot so easily determine 

which bid from which advertiser is most likely to deliver the biggest expected yield. 

By not signalling which users have high interest, intent and value, advertisers are 

more likely to be invited to auctions for users with a lower projected value to the 

advertiser, simply because they miss out on being classified as a most-relevant 

advertiser to users when they in fact are. So withholding audience pools and 

conversion data passback in an outcome-based auction may cost more in reduced 

ROAS than it saves by avoiding the yield inflation effect of a ‘winners invited’ strong 

sorting approach. 
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The advertiser has little to no control over the platform’s knowledge of the user, or of 

how much information other advertisers give the platform. This makes it hard for the 

advertiser to impair the platform’s knowledge at auction time. The platform will know 

that the user is interested in furniture, for example, and can predict this even for 

users who have not directly exhibited such information. So merely by announcing 

‘we sell furniture’ to the platform, the advertiser begins to get sorted into some 

auctions and not others. (Nor is there any practical way for an advertiser not to signal 

what products and services it is advertising, as this would defeat the whole object of 

advertising!) The platform sees information about buyers, users and sellers (since 

the platform is the seller), which the advertiser does not. This allows it to sort 

advertisers into user auctions in a way that sets an effective floor price. 

 

An advertiser can only beat the system if it can somehow identify people whose 

actual expected value is greater than the expected value predicted by the platform at 

auction time. The advertiser cannot pretend to be a different brand, and cannot fool 

the platform into thinking people are not interested in furniture when they are. So 

what can advertisers do? 

 

If there is an information advantage to be had for advertisers, it is likely to be in those 

auctions that clear less efficiently, i.e. those where the data passback is weak for all 

advertisers. In a click auction, the platform immediately knows whether the user 

clicked, and this outcome can be fed back into the model space at user level just 

after auction time, potentially informing the user’s next impression or the advertiser’s 

next bid. The same is true, with a short time lag, for any outcome event that can be 

digitally tracked by the platform through data passback. 
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The extreme form of a non-clearing auction is an auction for impressions. 

Advertisers bid to serve ads to consumers, but no information is shared back with 

the platform about what happens next. The platform therefore knows the acceptable 

cost of each user to each advertiser at auction time (from the bid price), but not the 

expected value. In an impression auction, it is also easier for advertisers to disguise 

why they are bidding at a given price – the price may be a composite function of user 

profile features (e.g. ‘aged 25’), contexts (‘on a travel website’), locations 

(‘Edinburgh’), time (’12.00pm’), recency/frequency (‘third impression in the last 

week’), etc. 

 

This returns information advantage to the advertiser. The more advertisers can bid 

on impressions, without exposing the results of those impressions, the more they 

can disguise their intentions in the auction. This increases the possibility that under-

priced impressions can be identified and exploited for longer, rather than being re-

priced by the platform based on data passback. We therefore want to shift spend 

away from buying trackable outcomes, towards buying towards ad delivery goals 

(e.g. reach and frequency) to given audiences in a given time period.16 

 

However, to do this, advertisers need a way to predict which impressions are worth 

most. This means predicting the conditional probability of a valuable goal event (e.g. 

sale) given ad exposure, and score all audience features based on their relative 

importance. The advertiser can then bid on impressions, weighting spend towards 

 
16 For example reach and frequency buying with Meta (Meta, 2022, 3). 
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the features with highest affinity. In some platforms this can be done as a custom 

algorithm, in others more crudely as an audience targeting rule set.17 

 

This approach is not wholly new: marketing mix models and simulations describing 

the incremental impact of ad exposure on business outcomes have been in common 

use since the 1960s.18 What is new is the need, and opportunity, to use predictive 

models of this kind to execute high-frequency trading across many different buyable 

audience features, and multiple platforms, in real time, and to update models 

dynamically based on predictive accuracy (uplift in outcomes). 

 

Given the information complexity involved and the need for rapid and iterative 

decision-making in where, when and how much to bid, there is a clear case for an AI 

application. 

 

The solution: “Turntable” 

 

The proposed application, Turntable, uses AI to predict the expected value of 

impressions to advertisers given available biddable features, and dynamically set bid 

prices for different features to automate bidding instructions into the walled gardens. 

Turntable will be used to increase return on advertising spend for large [COMPANY] 

advertisers. The data and modelling workflow of Turntable is illustrated in Figure 1 

(with three example platforms: Amazon, Google, Meta) and described below. 

  

 
17 E.g. Google (2022, 2). 
18 E.g. Bass (1968), Kotler (1968). 
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The Prepare module assembles, organises and enriches three main types of data: 

 

• Commerce data is volumetric and financial information: what has been sold, 

how many units, which products/services, revenue and gross profit. For 

businesses who sell directly this normally comes from a data warehouse and 

includes information at a customer level. For businesses who sell indirectly 

(e.g. through retailers) the data may come from third parties (e.g. Nielsen 

supermarket data) and be organised by store or sales channel. Commerce 

data gives us our measures of value. 

• Conversion data tells us about the circumstances of sale – e.g. the channel, 

time, location, referral source. Increasingly this is from digital analytics 

systems and may be highly granular (e.g. showing which paid media 

campaigns referred traffic, which individual pages assisted conversion, which 

device a customer transacted on, etc.). It is typically matched to commerce 

data via a consistent identifier (e.g. user/customer ID in web analytics, store 

ID for aggregated sales channel data). 

• Impression data is a measure of where and when paid media impressions 

were delivered, and to which groups. This is described in more detail below. 

 

This data needs to be sourced and stored in a set of data environments (tables for 

commerce, conversion and impressions). It then needs to be normalised to create a 

common data set for modelling. Typically data of this kind can be normalised at two 

levels: 
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• ID level: sets of records sharing a common identifier denoting an individual 

user or customer 

• Cohort level: well-defined sets of records with shared criteria – for example, 

all impression, conversion and commerce data associated with a particular 

geographic area, time period, store, etc. 

 

Normalisation involves some standardisation of criteria, for example re-coding 

geographic or timestamp data into a common format. Modern graph database 

architecture is convenient for this because it allows records in the normalised data 

set to be traversed quickly along different criteria (e.g. select by ID, geography, 

timestamp, channel) without creating multiple aggregated tables.19 This means 

predictive models can be built on the whole joined data set of key-value pairs. 

 

The benefit of a graph model is that we can treat IDs (which denote one individual) 

and cohorts (which denote a group of individuals) as equivalent in data model terms 

as feature keys, i.e. entities to which values are attached. So for example, a 

purchase value and a timestamp (e.g. ‘$1000 spent on Wednesday’) may be 

attached to each other, and to either a user ID (‘spent by Alice Smith’) or a cohort 

(‘spent in Leicester’, ‘spent by iPhone users’, etc). This means we can treat user-

level and cohort-level features as analytically equivalent which will improve our 

models in the Decide module (below). 

 

Where possible the data should then be enriched to add additional features. This 

enrichment is at feature-key level whether for IDs or cohorts, e.g. adding features 

 
19 Robinson et al. (2015) 
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from a data broker that give more facts or predictions about individual customers 

matched against their IDs; or at a cohort level using indexed likelihood scores from 

consumer panel data for certain features, e.g. ‘this region overindexes on 

homeowners or buyers of Apple devices’. 

 

The Prepare capability described above can be assembled from components that 

already exist within the major cloud computing providers and [COMPANY], speeding 

up development of Turntable. [COMPANY]’s data products business [Subsidiary 1] 

has a series of APIs for normalising data at an ID level and at cohort level (using 

[normalisation technique described here]), and matching against third-party data sets 

for feature enrichment and cohort-level scoring.20 I propose to use these services to 

provide the Prepare module of Turntable. 

 

The ‘Decide’ module applies AI to this joined and enriched data set, to identify 

which features within the data predict incremental value. The target variable will 

come from the commerce data (typically a sales volume, revenue or profit figure). 

The ‘Feature extraction and scoring’ component within Decide does the following: 

 

1. Revenue lift. For each feature-key type which has both revenue and 

impressions attached as values (e.g. ID, location, time period, device…), 

predict the marginal revenue given ad exposure. Then do the same for each 

key-value in the feature-key type (e.g. User A, Location B, Time Period C, 

Device D…). This can be done using a hierarchical modelling technique, for 

example a Bayesian hierarchical regression or a random forest, to solve for 

 
20 Uber (2018). 
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matrix sparsity, so that each key-value pair is assigned a marginal value 

conditional on having been exposed to advertising. Ideally this will also 

account for the marginal effect of frequency – i.e. using a continuous function 

(e.g. a Hill function) rather than a logistic one to incorporate the diminishing 

response of approach.21 

 

2. Feature extraction. For each key-value pair for which marginal revenue is 

predicted, extract the other features attached to that entity – for example, 

‘Location X has features A, B, C’; ‘Sales Channel Y has features D, E, F…’. 

Build a feature importance model, scoring the expected marginal revenue 

given ad exposure to an entity (ID/cohort) with a particular feature. This can 

be done using gradient boosting (e.g. XGBoost) or Shapley/LMG regression.22 

 

3. Scoring. Return a scored list of features existing within the joined data, each 

with a value for the expected incremental revenue per advertising impression 

served to that feature. 

 

 

 
21 See Jin et al. (2013) for an example of this approach using Hill functions to estimate diminishing 
response. 
22 Chen and Guestin (2016), Lindeman, Merenda and Gold (1980). 
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Fig. 2: Feature extraction and scoring model workflow  

 

 

The list of features, each with its predicted revenue lift per impression, is then 

passed to the ‘Feature translation’ component. This is a set of data tables containing 

lists of features that can be bought in each walled garden platform: e.g. targetable 

audience definitions, locations, etc. These lists are typically available for download 

from the platforms’ buying tools. The Feature Translator uses natural-language AI 

(e.g. GPT-3) to find the closest-matching buyable features in each platform lists, and 

create a match table. Figure 3 shows the result of a simple proof of concept 

demonstrating this: 
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Fig. 3: Correspondence mapping between feature labels using GPT-3 

 

 

Turntable now has a list of scored features with a predicted value attached to each, 

matched to buyable features in each platform. This information is passed to the 

‘Reverse Auction Engine’. This is a set of API connections that regularly pulls in 

availability and cost information from the tables, for each feature in the table. 

Because Turntable knows (a) the expected value per feature to the advertiser, and 

(b) the volume and cost of each feature across platforms using the match table, it 

can allocate auction budgets optimally per feature, per platform. This creates a 

reverse of the platform auction dynamic: one advertiser, effectively inviting many 

platforms to disclose availability and price for equivalent features, so the advertiser 

can prioritise those that are under-priced. 

 

The Act module executes automated campaign setup and media buying based on 

information from the Reverse Auction Engine. For each platform, a Bidding Engine 

component connects to the platform’s buying tool APIs and sets up campaigns 

defining the features, geographies and time periods, setting a total budget and max 

bid for each based on the predicted value. In simpler platforms, each desired feature 

set is built as a separate target audience or line-item, each with its own budget and 
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max bid. In more sophisticated platforms that allow programmable bidding, each 

feature can be included in a custom bidding algorithm with a bid upweight set per 

matching feature.23 

 

Finally, the ‘Price comparison’ component retrieves daily spend and delivery data per 

feature group from the platforms’ reporting APIs and feeds these back into the 

reverse auction engine and the impression data store in the Prepare module. This 

ensures Turntable is always deciding based on an up-to-date view of delivery and 

cost. 

 

Impact and change management 

 

Turntable’s main impact is on the problem stated above. By predicting marginal 

revenue per impression for different buyable features, and automating in-platform 

buying based on that information, it lets large advertisers bid on outcomes without 

passing outcome data back to the platforms, regaining information advantage in the 

auction, so advertisers can find under-priced features and improve ROAS. 

 

Second, Turntable benefits [COMPANY] in two ways. It creates valuable IP that can 

be licensed to advertisers as software, hedging against commoditisation of media 

buying services and in-housing of buying. It also creates a new economy of scale. As 

well as implementing Turntable per client, I propose to create a ‘feature co-op’ where 

[COMPANY] clients can choose to share information about the value of features for 

mutual benefit: for example, an airline and a hotel chain might use federated learning 

 
23 For a summary of custom bidding algorithm design see Gilbert (2020) ch.10. 
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techniques to train Turntable to find features that drive revenue for both business-

class flights and hotel rooms.24 This creates a new incentive for large advertisers to 

use [COMPANY] to have access to this pooled feature information. 

 

Turntable can be built in [COMPANY]’s existing cloud infrastructure and using some 

existing components for the Prepare module. The Decide module will be a novel 

build. Workflows for automating aspects of campaign setup and buying in the Act 

module already exist, as do contracts with systems for aggregating and automating 

collection of reporting data for the price comparison component. 

 

The biggest organisational change will be to the relationship between platform 

buying teams and data science teams. [Redacted information covering structure and 

operating model of platform-based buying teams and data science teams within 

[Company].] 

 

When using Turntable, buyers’ work does not change but their data source does: 

they will use data about the incremental results (e.g. sales) generated by each part 

of the campaign, from Turntable’s models. This will require significant re-education of 

buying teams in the short term to trust and use results built on client data not 

platform metrics. Data science teams configuring Turntable for clients will need to 

generate new data outputs (e.g. performance dashboards) as often as daily, for use 

by performance teams. In the longer term, much of the work of both teams – making 

predictions and taking buying decisions – will be automated, and data science and 

buying teams will focus more on integrating new data sources into Turntable’s 

 
24 Federated learning is collaborative model training without data sharing. See Martineau (2022). 
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models, designing specific tests, and measuring the impact of specific innovations 

(e.g. new media formats), rather than measuring or executing business-as-usual 

buying. 

 

Ultimately, Turntable represents the convergence of econometric modelling and 

performance media buying to create a new approach, where advertisers can buy ad 

impressions in online auctions based on expected sales effect, without giving 

information advantage to the platforms. It shifts the work of data scientists and 

buying teams from delivering manual measurement and activation, to supporting 

progressive automation. Finally, it creates new sources of advantage for 

[COMPANY]: license revenue through IP as software, a defence against 

commoditisation in media buying, and efficiencies through automation of key media 

planning and buying tasks. I believe it is a valid and important case for an AI 

application within our business. 
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